LV8210W

Overview

The LV8210W is a DVD-ROM system motor driver.

Features

- Bi-CDMOS

Spindle motor driver

- PWM sensorless
- Built-in short brake
- V-type control amplifier
- Actuator with anti reverse circuit

Actuator

- DWM BTL 3ch built-in

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	$\mathrm{V}_{\text {CC }}$ max		6	V
Output block power supply voltage	VS max		6	V
Predriver voltage (gate voltage)	VG max		10	V
Output current	IO max		1.0	A
Allowable power dissipation	Pd max	Independent IC	0.45	W
Operating temperature	Topr		-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

\square Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
■ Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V_{CC}		4.5 to 5.5	V
Output block power supply voltage	VS		0 to V_{CC}	V
Predrive voltage (gate voltage)	VG		$\mathrm{VS}+3.5$ to 9.8	V

Electrical Characteristics $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Power supply current 1	${ }^{1} \mathrm{CC}{ }^{1}$	S/S pin H MUTE pin L		4.5	6.0	mA
Power supply current 2	${ }^{1} \mathrm{CC}^{2}$	S/S pin H MUTE pin H		9.0	11.5	mA
Power supply current 3	${ }^{1} \mathrm{CC}^{3}$	S / S pin L (in standby mode)			20	$\mu \mathrm{A}$
Charge pump output						
Output voltage	VCP			9.5	9.8	V
Internal oscillator circuit						
Internal oscillation frequency	fclk			3.2	4.0	MHz
Overheat protection circuit						
Thermal protection circuit operating temperature	TSD	*Design target	150	180		${ }^{\circ} \mathrm{C}$
Temperature hysteresis width	$\Delta T S D$	*Design target		40		${ }^{\circ} \mathrm{C}$
Actuator block [Control]						
Output offset voltage	VOFS	$\mathrm{VCREF}=\mathrm{VCTL}=1.65 \mathrm{~V}$	-60		+60	mV
Actuator input pin						
Input voltage range	V_{IN}	VCREF $=1.65 \mathrm{~V}$	0		V_{CC}	V
Current feedback output pin						
SOURCE	ISO		45	50	65	$\mu \mathrm{A}$
SINK	ISI		45	50	65	$\mu \mathrm{A}$
Output side						
Focus output ON resistance	Ron1, 2	$\mathrm{I}^{\mathrm{O}}=0.5 \mathrm{~A}$ sum of upper and lower outputs		1.5	1.8	Ω
Sled output ON resistance	Ron3	$\mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}$ sum of upper and lower outputs		1.0	1.3	Ω
Internal oscillation circuit (triangular wave)						
Oscillation frequency	f	VCREF $=1.65 \mathrm{~V}$	200	240	270	kHz
Spindle motor driver [Output block]						
SOURCE1	Ron (H1)	$\mathrm{I}^{\mathrm{O}}=0.5 \mathrm{~A}, \mathrm{VS}=5 \mathrm{~V}, \mathrm{VG}=9.5 \mathrm{~V}$ forward Tr		0.25	0.40	Ω
SINK	Ron (L)	$\mathrm{I}^{\mathrm{O}}=0.5 \mathrm{~A}, \mathrm{VS}=5 \mathrm{~V}, \mathrm{VG}=9.5 \mathrm{~V}$		0.25	0.40	Ω
SOURCE+SINK	Ron ($\mathrm{H}+\mathrm{L}$)	$\mathrm{I}^{\prime}=0.5 \mathrm{~A}, \mathrm{VS}=5 \mathrm{~V}, \mathrm{VG}=9.5 \mathrm{~V}$		0.5	0.80	Ω
Position detection comparator						
Input offset voltage 1	VOFS1-1	*Design target, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{VCOM}=2.5 \mathrm{~V}$	-5		5	mV
Control						
VCREF input voltage range	VCREF		1.55	1.65	1.75	V
VCTL input voltage range	VCTL		0		V_{CC}	V
Current control circuit						
Forward rotation drive gain	GDF ${ }^{+}$		0.20	0.25	0.30	times
Reverse rotation drive gain	GDF-		-0.30	-0.25	-0.20	times
Dead zone width	VDZ		110	150	190	mV
Limiter voltage	VRf			0.20	0.30	V
vCO pin						
VCO "H" level voltage	VCOH		0.9	1.0	1.1	V
VCO "L" level voltage	VCOL		0.4	0.5	0.6	V
S/S pin						
"H" level input voltage range	VSSH	Start	2.7		V_{CC}	V
"L" level input voltage range	VSSL	Stop	0		0.6	V

* Design target value and no measurement is performed.

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
BRK SEL pin						
" H " level input voltage range	VBRH	Short brake	2.7		V_{CC}	V
"L" level input voltage range	VBRL	Reverse torque brake	0		0.6	V
FG1 output, FG3 output pin						
"L" level output voltage	VFGL	$\mathrm{I}^{\prime}=0.5 \mathrm{~mA}$	0		0.5	V
Amplifier block						
Input offset voltage	VIOER		-10		10	mV
Input bias current	IBER		-1.0		1.0	$\mu \mathrm{A}$
Common phase input voltage range	VERCM		0		$\mathrm{V}_{\mathrm{CC}}{ }^{-1.0}$	V
Output "H" level voltage	VEROH	IERO $=-350 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.5$			V
Output "L" level voltage	VEROL	IERO $=350 \mu \mathrm{~A}$			0.5	V

Spindle and Actuator Control Truth Table

S/S	Mute	Spindle	H-bridge1	H-bridge2	H-bridge3
H	H	Active	Active	Active	Active
L	H	Mute	Mute	Mute	Mute
H	L	Active	Mute	Mute	Mute
L	L	Mute	Mute	Mute	

Package Dimensions

unit : mm (typ)

3163B

Pin Assignment

Top view

Pin Functions

Pin No.	Pin name	Function
1	RF1	Output current detection pin. The drive current is detected using the low resistance resistor inserted between this pin and ground.
2	RF2	Output current detection signal input pin. Short-circuit this pin to RF1 pin (pin 1).
3	VS	Spindle motor drive power supply. Insert a capacitor between this pin and ground.
4	COM	Spindle motor common point connection.
5	CP	Charge pump stepped-up voltage pulse output. Insert a capacitor between this pin and CPC (pin 6).
6	CPC	Charge pump stepped-up voltage connection. Insert a capacitor between this pin and CP (pin 5).
7	VG	Charge pump stepped-up voltage output. Insert a capacitor between this pin and ground.
8	VCC	Power supply. Insert a capacitor between this pin and ground.
9	FG1	FG pulse output pin (MOS output). Outputs a pulse signal equivalent to a one Hall sensor system pulse out put.
11	FG3	FG pulse output pin (MOS output). Outputs a pulse signal equivalent to a three Hall sensor system pulse out put.
12	COMIN	Motor position detection comparator filter. Insert a capacitor between this pin and COMIN (pin 12).
13	VCO	Motor position detection comparator filter. Insert a capacitor between this pin and FIL (pin 11). The VCO frequency follows the motor speed as indicated by the VCOIN pin voltage.
14	RMAX	VCO maximum frequency setting. Insert a resistor between this pin and ground. Making the value of the resistor smaller increases the frequency. Set the frequency so that the VCO oscillator frequency when the VCOIN pin voltage is VCC -1 V is over 48 times the switching frequency at the maximum motor speed.
15	RMIN	VCO minimum frequency setting Making the value of the resistor smaller increases the frequency.
10		

Continued on next page.

LV8210W

Continued from preceding page.

Pin No.	Pin name	Function
16	VCOIN	VCO control voltage input. Insert a capacitor between this pin and ground. A control output proportional to the motor speed is generated in the logic block, and that output charges and discharges the capacitor inserted between this pin and ground. The VCO frequency is controlled by the voltage on this pin.
17	TGND	GND pin.
18	VCTL	Spindle speed control pin. Positive torque control is applied when greater than VCREF.
19	VCREF	Spindle and actuator control reference voltage input pin (1.65V).
20	El^{+}	Amplifier non-inverting input.
21	El^{-}	Amplifier inverting input.
22	EO	Amplifier output pin.
23	IN3	H-bridge 3 control signal input. Outputs are on pin 34 pin 37. Hduty of OUT3R and OUT3F will be OUT3R<OUT3F when the voltage level at the IN pin is greater than VCREF.
24	CF3	Output pin for H -bridge 3 current feedback circuit.
25	SGND	GND pin.
26	IN2	H-bridge 2 control signal input. Outputs are on pin 38 pin 41. Hduty of OUT2R and OUT2F will be OUT2R<OUT2F when the voltage level at the IN pin is greater than VCREF.
27	CF2	Output pin for H -bridge 2 current feedback circuit.
28	IN1	H-bridge 1 control signal input. Outputs are on pin 42 pin 45. Hduty of OUT1R and OUT1F will be OUT1R<OUT1F when the voltage level at the IN pin is greater than VCREF.
29	CF1	Output pin for H -bridge 1 current feedback circuit.
30	S/S	Spindle motor block and actuator block start/stop pin. A high-level input : Start
31	BRK	Spindle motor block brake control. Reverse torque braking is applied when this pin is low-level short braking is applied when this pin is high-level.
32	MUTE	Sets actuator output to the open state. All outputs are in the open state when this pin is low-level.
33	VS3	H-bridge 1 motor power supply. Insert a capacitor between this pin and ground.
34	OUT3R	H-bridge 1 reverse output.
35	PGND3	H-bridge 1 output block ground.
36	NC	
37	OUT3F	H-bridge 1 forward output.
38	OUT2R	H-bridge 2 reverse output.
39	VS2	H-bridge 2 motor power supply. Insert a capacitor between this pin and ground.
40	PGND2	H-bridge 2 output block ground.
41	OUT2F	H-bridge 2 forward output.
42	OUT1R	H-bridge 1 reverse output.
43	PGND1	H-bridge 1 output block ground.
44	VS1	H-bridge 1 motor power supply. Insert a capacitor between this pin and ground.
45	OUT1F	H-bridge 1 forward output.
46	WOUT	Output pin. Motor coil is connected to this pin.
47	VOUT	
48	UOUT	

Sample Application Circuit

* Insert a capacitor between VS and GND between V_{CC} and GND.

LV8210W
Pin Functions

\begin{tabular}{|c|c|c|c|}
\hline Pin No. \& Pin name \& Function \& Equivalent circuit \\
\hline 3 \& VS \& \begin{tabular}{l}
Power supply pin for sled motor driver. \\
A capacitor must be connected between this pin and GND.
\end{tabular} \& \\
\hline \[
\begin{aligned}
\& 46 \\
\& 47 \\
\& 48
\end{aligned}
\] \& WOUT VOUT UOUT \& \begin{tabular}{l}
Output pin. \\
Connect the spindle motor coil.
\end{tabular} \& \\
\hline \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { RF1 } \\
\& \text { RF2 }
\end{aligned}
\] \& \begin{tabular}{l}
Output current detection pin. \\
Drive current is detected when a resistor with a small value is connected between this pin and GND.
\end{tabular} \& \\
\hline 5 \& CP \& \begin{tabular}{l}
Charge pump pulse output pin. \\
A capacitor must be connected between this pin and CPC (pin 30).
\end{tabular} \& \\
\hline 6

7 \& CPC \& | Pin for charge pump. |
| :--- |
| A capacitor must be connected between this pin and CP (pin 29). |
| Pin for charge pump. |
| A capacitor must be connected between this pin and GND. | \&

\hline 8 \& V_{CC} \& | Power supply pin to supply to the small signal system circuit |
| :--- |
| A capacitor must be connected between this pin and GND. | \&

\hline 9

10 \& FG1

FG3 \& | FG1 pulse output pin. |
| :--- |
| The pulse of one hall sensor is outputted. |
| FG3 pulse output pin. |
| The pulse of three hall sensor is outputted. | \&

\hline 12 \& COMIN \& | Differential input pin of Position detection comparator. |
| :--- |
| A capacitor must be connected between this pin and FIL (pin 14). | \&

\hline 11 \& FIL

COM \& | Waveform synthesis signal filter pin. |
| :--- |
| A capacitor is connected between this pin and COMIN (pin 13). |
| Spindle motor common point connection connect to COM. | \&

\hline
\end{tabular}

Continued on next page.

LV8210W

Continued on next page

LV8210W

Pin No.	Pin name	Function	Equivalent circuit
$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{El}^{+} \\ & \mathrm{El}^{-} \\ & \mathrm{EO} \end{aligned}$	- Amplifier non-inverting input pin - Amplifier inverting input pin - Amplifier output pin	(20)
$\begin{aligned} & 23 \\ & 26 \\ & 28 \end{aligned}$	IN3 IN2 IN1	- H-bridge 3 control signal input pin - H-bridge 2 control signal input pin - H-bridge 1 control signal input pin	
$\begin{aligned} & 24 \\ & 27 \\ & 29 \end{aligned}$	$\begin{aligned} & \text { CF3 } \\ & \text { CF2 } \\ & \text { CF1 } \end{aligned}$	- Output pin for H -bridge 3 current feedback circuit - Output pin for H -bridge 2 current feedback circuit - Output pin for H -bridge 1 current feedback circuit	
25	SGND	GND pin of small signal system.	
11	S/S	Spindle motor block start/stop pin. High-level input : Start	v_{CC} (30)
12 13	BRK	Brake pin of spindle motor block. High-level input : Forward torque Low-level input : Brake Sets the actuator output in the open state. All outputs are in the open state when this pin is low-level.	
36	NC		

Continued on next page

LV8210W
Continued from preceding page.

Pin No.	Pin name	Function		
33	VS3	H-bridge output block. Insert capacitors between		
39	VS2	VS1, VS2, VS3 and PGND1, PGND2, and PGND 3.		
44	VS1			
37,34	OUT3F/R			
41,38	OUT2F/R			
45,42	OUT1F/R			
35	PGND3			
40	PGND2			
43	PGND1			

Block Diagram

3ch Actuator Block

Spindle Motor Driver Block

LV8210W Functional Description and Notes on External Components

The LV8210W is a system motor driver IC that can implement, with just a single chip, the motor driver circuits required for CD and MD systems. Since the LV8210W provides not only a spindle driver, but drivers (with an H-bridge structure) for sled, focus, and tracking motors, it can contribute to miniaturization and thinner form factors in end products. Since the spindle and sled drivers adopt a direct PWM sensorless drive technique, they provide high efficiency motor drive with a minimal number of external components.
Read the following notes before designing driver circuits using the LV8210W to design a system with fully satisfactory characteristics.

1. Output Drive Circuits and Speed Control Methods

The LV8210W adopts a synchronous commutation direct PWM drive method to minimize power loss in the output. Low on-resistance DMOS devices are used as the output transistors. (The upper and lower side output block device on-resistance is 0.5Ω (typical).)
The LV8210W spindle drivers control system takes an analog input and uses a V-type control amplifier. The V-type control amplifier based speed control system (gain : 0.25 typical) controls the speed by controlling the voltage of the VCTL pin (pin 18) and the VCREF pin (pin 19). The circuit provides positive torque when VCTL is greater than VCREF, and allows the application to select either reverse torque braking (when the BRK pin is low) or shortcircuit braking (when the BRK pin is high) when VCTL is less than VCREF. The PWM frequency is twice the frequency of the charge pump pulse rate ($\operatorname{pin} 5$).

2. Soft Switching Circuit

This IC performs "soft switching", which is a technique that varies the duty and achieves quieter motor operation by reducing the level of motor drive noise. This IC provides a "current application on/off dual sided soft switching" type soft switching function.
3. Current Limiter Circuit

The current limit value of the current limiter circuit is determined by RF in the equation $\mathrm{I}=\mathrm{VRF} / \mathrm{Rf}$ (here, VRF $=$ 0.20 V , typical).

The current limiter circuit detects the RF1 pin (pin 1) peak current at the RF2 pin (pin 2) and turns the sink side transistor off.
4. VCO Circuit Constants

The LV8210W spindle block adopts a sensorless drive technique. Sensorless drive is implemented by detecting the back EMF signal generated by the motor and setting the commutation timing accordingly. Thus the timing control uses the VCO signal. We recommend using the following procedure to determine the values of the VCO circuit's external components.

1) Connect components with provisional values.

Connect a $2.2 \mu \mathrm{~F}$ capacitor between the VCOIN pin (pin 16) and ground, connect a $68 \mathrm{k} \Omega$ resistor between the RMAX pin (pin 14) and ground, and connect a 2200 pF capacitor between the VCO pin (pin 15) and ground.
2) Determine the value of the VCO pin (pin 13) capacitor.

Select a value such that the startup time to the target speed is the shortest and such that the variations in startup time are minimized. If the value of this capacitor is too large, the variations in the startup time will be excessive, and if too small, the motor may fail to turn. Since the optimal value of the VCO pin constant differs with the motor characteristics and the startup current, the value of this component must be verified again if the motor used or any circuit specifications are changed.
3) Determine the value of the RMAX pin (pin 14) resistor.

Select a resistor value such that the VCOIN pin voltage is about $\mathrm{V}_{\mathrm{CC}}-1.1 \mathrm{~V}$ or lower with the motor operating at the target maximum speed. If the value of this resistor is too large, the VCOIN pin voltage may rise excessively.
4) Determine the value of the VCOIN pin (pin 16) capacitor.

If the FG output (pin 9 and 10) pulse signal becomes unstable at the lowest motor speed that will be used, increase the value of the VCOIN pin capacitor.

5. S/S and MUTE Circuit

The S / S pin (pin 30) functions as the spindle motor driver's and the actuators motor driver's start/stop pin ; a high-level input specifies that the operation is in the start state. The MUTE pin (pin 32) operates on all driver blocks other than the spindle block; a low-level input mutes these outputs. In the muted state, the corresponding drivers (H bridge) all go to the high-impedance state, regardless of the states of the logic inputs.
A low level input must be applied to the S / S pin to set the IC to the standby state (power saving mode).
When power is supplied to V_{CC}, set either S / S pin or MUTE pin (or both) to low-level.
6. BRK Circuit

The BRK pin (pin 31) switches between reverse torque and short-circuit braking; a high level selects short-circuit braking and a low level selects reverse torque breaking. When the motor speed becomes adequately slow in the reverse torque braking state, the application must switch to the short-circuit braking state to stop the motor. (Note: The IC must not be in the power saving state at this point.)
When stopping the motor in the state where the control voltage, VCTL, is less than VCREF (when a low level is input to the BRK pin), if the timing of the switch to short-circuit braking is too early, and remaining motor rotation is a problem, reduce the value of the RMAX pin (pin 14) resistor. Also, if motor oscillation continues when the motor is nearly stopped, and a switch to short braking mode does not occur, insert a resistor with a value of a few $\mathrm{k} \Omega$ at the COM pin. (Note: Verify that inserting this resistor does not adversely affect the startup characteristics.)

7. FG Output Circuit

The FG3 pin (pin 10) is the spindle block FG output pin. It provides a pulse signal equivalent to that provided by systems that use three Hall-effect sensors. The FG1 pin (pin 9) outputs a signal that follows the spindle output U phase back EMF voltage. The FG1 and the FG3 pins both have a MOS open-drain output circuit structure.
This means that external pull-up resistors must be provided. Connect the power supply from the FG signal input side as the pull-up resistor power supply. We recommended using a resistor of about $10 \mathrm{k} \Omega$.

LV8210W

8. Spindle Block Position Sensor Comparator Circuit

The spindle block position sensor comparator circuit uses the back EMF signal generated by motor rotation to detect the rotor position. The output block power application timing is determined based on the position information acquired by this circuit. Startup problems due to noise on the comparator inputs can be ameliorated by inserting a capacitor (1000 to 4700 pF) between the COMIN pin (pin 12) and the FIL pin (pin 11).
9. Charge Pump Circuit

Since the LV8210W has a DMOS (n-channel) output structure, it includes a charge pump based voltage step up circuit. When capacitors (recommended value : $0.22 \mu \mathrm{~F}$ or higher) are connected between the CP and CPC pins, the IC generates a level that is twice the VCC voltage (or 9.5 V). It is desirable that this IC be used with the voltage relationship between the stepped-up voltage (VG) and the motor supply voltage (VS) meeting the condition VG - VS $\geq 3.5 \mathrm{~V}$. Note that the stepped-up voltage (VG) is, by design, clamped at about 9.5 V DC . If the stepped-up voltage (VG) exceeds 10 V (VG max) due to ripple, the value of the VG pin capacitor must be increased.

Observe the following points if the VG voltage is supplied externally.

1) The externally applied VG voltage must not exceed VG max in the Absolute Maximum Ratings.
2) The capacitor between the CP and CPC pins (pins 5 and 6) is not required.
3) The sequence in which the VG voltage is applied requires care. The VG voltage must be applied after V_{CC}, and must be removed before V_{CC} is cut.
4) Since there is an internal diode between the $V_{C C}$ and $V G$ pins in the IC, a voltage such that $V_{C C}>$ VG must never be applied to the VG pin.
10. Actuator Block

The LV8210W incorporates three H bridge channels for use as actuator drivers for the sled, focus, and tracking systems.
Hduty of OUTR and OUTF will be OUTR < OUTF when the voltage level at the IN pin is greater than VCREF.

Enlarged view of the area near VCTL $=$ VCREF $($ VOFS $=33 \mathrm{mV}($ reference data $))$

11. Notes on PCB Pattern Design

The LV8210W is a system driver IC implemented in a Bi-DMOS process; the IC chip includes bipolar circuits, MOS logic circuits, and MOS drive circuits integrated on the same chip. As a result, extreme care is required with respect to the pattern layout when designing application circuits.
(1) Ground and $\mathrm{V}_{\mathrm{CC}} / \mathrm{VS}$ wiring layout

The LV8210W ground and power supply pins are classified as follows.
Small-signal system ground pins \rightarrow SGND (pin 25), TGND (pin 17)
Large-signal system ground pins \rightarrow PGND1 (pin 43), PGND2 (pin 40), PGND3 (pin 35)
Small-signal system power supply pin $\rightarrow \mathrm{V}_{\mathrm{CC}}$ (pin 8)
Large-signal system power supply pins \rightarrow VS (pin 3), VS1 (pin 44), VS2 (pin 39), VS3 (pin 33)
A capacitor must be inserted, as close as possible to the IC, between the small-signal system power supply pin (pin 8) and ground pins (pin 17, 25).
The large-signal system ground pins (PGND) must be connected with the shortest possible lines, and furthermore in a manner such that there is no shared impedance with the small-signal system ground lines. Capacitors must also be inserted, as close as possible to the IC, between the large-signal system power supply pins (VS) and the corresponding large-signal system ground pins.
(2) Positioning the small-signal system external components

The small-signal system external components that are also connected to ground must be connected to the small-signal system ground with lines that are as short as possible.
\square SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
■ SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
\square No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
\square Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
■ Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of July, 2007. Specifications and information herein are subject to change without notice.

